Các mô hình vũ trụ học Vũ_trụ

Mô hình dựa trên thuyết tương đối tổng quát

Thuyết tương đối rộnglý thuyết hình học về lực hấp dẫn do Albert Einstein đưa ra vào năm 1915 và là miêu tả hiện tại của hấp dẫn trong vật lý hiện đại. Nó là cơ sở cho các mô hình vật lý của Vũ trụ. Thuyết tương đối tổng quát mở rộng phạm vi của thuyết tương đối hẹpđịnh luật vạn vật hấp dẫn của Newton, đưa đến cách miêu tả thống nhất về hấp dẫn như là tính chất hình học của không gianthời gian, hay không thời gian. Đặc biệt, độ cong của không thời gian có liên hệ trực tiếp với năng lượngđộng lượng của vật chấtbức xạ có mặt trong một thể tích cho trước. Liên hệ này được xác định bằng phương trình trường Einstein, một hệ phương trình vi phân riêng phần. Trong thuyết tương đối rộng, sự phân bố của vật chất và năng lượng xác định ra hình học của không thời gian, từ đó miêu tả chuyển động có gia tốc của vật chất. Do vậy, một trong các nghiệm của phương trình trường Einstein miêu tả sự tiến triển của Vũ trụ. Kết hợp với các giá trị đo về số lượng, loại và sự phân bố của vật chất trong Vũ trụ, các phương trình của thuyết tương đối tổng quát miêu tả sự vận động của Vũ trụ theo thời gian.[118]

Với giả sử của nguyên lý vũ trụ học về Vũ trụ có tính chất đồng nhất và đẳng hướng ở khắp nơi, có một nghiệm cụ thể chính xác của phương trình trường miêu tả Vũ trụ đó là tenxơ mêtric gọi là mêtric Friedmann–Lemaître–Robertson–Walker,

d s 2 = − c 2 d t 2 + R ( t ) 2 ( d r 2 1 − k r 2 + r 2 d θ 2 + r 2 sin 2 ⁡ θ d ϕ 2 ) {\displaystyle ds^{2}=-c^{2}dt^{2}+R(t)^{2}\left({\frac {dr^{2}}{1-kr^{2}}}+r^{2}d\theta ^{2}+r^{2}\sin ^{2}\theta \,d\phi ^{2}\right)}

trong đó (r, θ, φ) là các tọa độ tương ứng trong hệ tọa độ cầu. Mêtric này chỉ có hai tham số chưa xác định. Đó là tham số không thứ nguyên tỷ lệ dịch chuyển độ dài (dimensionless length scale factor) R miêu tả kích thước của Vũ trụ như là một hàm số của thời gian; giá trị R tăng biểu thị cho sự giãn nở của Vũ trụ.[119] Chỉ số độ cong k miêu tả hình học của Vũ trụ. Chỉ số k được định nghĩa bằng 0 tương ứng cho hình học Euclid phẳng, bằng 1 tương ứng với không gian có độ cong toàn phần dương, hoặc bằng −1 tương ứng với không gian có độ cong âm.[120] Giá trị của hàm số R theo biến thời gian t phụ thuộc vào chỉ số k và hằng số vũ trụ học Λ.[118] Hằng số vũ trụ học biểu diễn cho mật độ năng lượng của chân không trong Vũ trụ và có khả năng liên hệ tới năng lượng tối.[82] Phương trình miêu tả R biến đổi như thế nào theo thời gian được gọi là phương trình Friedmann mang tên nhà vật lý Alexander Friedmann.[121]

Kết quả thu được cho R(t) phụ thuộc vào k và Λ, nhưng nó có một số đặc trưng tổng quát. Đầu tiên và quan trọng nhất, tỷ lệ dịch chuyển độ dài R của Vũ trụ sẽ không đổi chỉ khi nếu Vũ trụ là đẳng hướng hoàn hảo với độ cong toàn phần dương (k=1) và có một giá trị chính xác về mật độ ở khắp nơi, như được lần đầu tiên chỉ ra bởi Albert Einstein.[118] Tuy vậy, trạng thái cân bằng này là không ổn định: bởi vì các quan sát cho thấy Vũ trụ có vật chất phân bố bất đồng nhất trên phạm vi nhỏ, R phải thay đổi theo thời gian. Khi R thay đổi, mọi khoảng cách không gian trong Vũ trụ cũng thay đổi tương ứng; dẫn tới có một sự giãn nở hoặc co lại trên tổng thể của không gian Vũ trụ. Hiệu ứng này giải thích cho việc quan sát thấy các thiên hà dường như đang lùi ra xa so với nhau; bởi vì không gian giữa chúng đang giãn ra. Sự giãn nở của không gian cũng giải thích lý do vì sao hai thiên hà có thể nằm cách nhau 40 tỷ năm ánh sáng, mặc dù chúng có thể hình thành ở một thời điểm nào đó cách đây gần 13,8 tỷ năm[122] và không bao giờ chuyển động đạt tới tốc độ ánh sáng.

Thứ hai, trong các nghiệm có một đặc tính đó là tồn tại kỳ dị hấp dẫn trong quá khứ, khi R tiến tới 0 và năng lượng và vật chất có mật độ lớn vô hạn. Dường như đặc điểm này là bất định bởi vì điều kiện biên ban đầu để giải phương trình vi phân riêng phần dựa trên giả sử về tính đồng nhất và đẳng hướng (nguyên lý vũ trụ học) và chỉ xét tới tương tác hấp dẫn. Tuy nhiên, định lý kỳ dị Penrose–Hawking chứng minh rằng đặc điểm kỳ dị này xuất hiện trong những điều kiện rất tổng quát. Do vậy, theo phương trình trường Einstein, R lớn lên nhanh chóng từ một trạng thái nóng đặc cực độ, xuất hiện ngay lập tức sau kỳ dị hấp dẫn (tức khi R có giá trị nhỏ hữu hạn); đây là tính chất cơ bản của mô hình Vụ Nổ Lớn của Vũ trụ. Để hiểu bản chất kỳ dị hấp dẫn của Big Bang đòi hỏi một lý thuyết lượng tử về hấp dẫn, mà vẫn chưa có lý thuyết nào thành công hay được xác nhận bằng thực nghiệm.[123]

Thứ ba, chỉ số độ cong k xác định dấu của độ cong không gian trung bình của không-thời gian[120] trên những khoảng cách lớn (lớn hơn khoảng 1 tỷ năm ánh sáng). Nếu k=1, độ cong là dương và Vũ trụ có thể tích hữu hạn.[124] Những vũ trụ như thế được hình dung là một mặt cầu 3 chiều nhúng trong một không gian bốn chiều. Ngược lại, nếu k bằng 0 hoặc âm, Vũ trụ có thể tích vô hạn.[124] Có một cảm nhận phản trực giác đó là dường như một vũ trụ lớn vô hạn được tạo ra tức thì từ thời điểm Vụ Nổ Lớn khi R=0 và mật độ vô hạn, nhưng điều này đã được tiên đoán chính xác bằng toán học khi k không bằng 1. Có thể hình dung một cách tương tự, một mặt phẳng rộng vô hạn có độ cong bằng 0 và diện tích lớn vô hạn, trong khi một hình trụ dài vô hạn có kích thước hữu hạn theo một hướng và một hình xuyến có cả hai đều là hữu hạn. Vũ trụ với mô hình dạng hình xuyến có tính chất giống với Vũ trụ thông thường với điều kiện biên tuần hoàn (periodic boundary conditions).

Số phận sau cùng của vũ trụ vẫn còn là một câu hỏi mở, bởi vì nó phụ thuộc chủ yếu vào chỉ số độ cong k và hằng số vũ trụ Λ. Nếu mật độ Vũ trụ là đủ đậm đặc, k sẽ có thể bằng +1, có nghĩa rằng độ cong trung bình của nó đa phần là dương và Vũ trụ cuối cùng sẽ tái suy sụp trong Vụ Co Lớn,[125] và có thể bắt đầu một vũ trụ mới từ Vụ Nẩy Lớn (Big Bounce). Ngược lại, nếu Vũ trụ không đủ đậm đặc, k sẽ bằng 0 hoặc −1 và Vũ trụ sẽ giãn nở mãi mãi, lạnh dần đi và cuối cùng đạt tới Vụ đóng băng lớncái chết nhiệt của vũ trụ.[118] Các số liệu hiện tại cho thấy tốc độ giãn nở của Vũ trụ không giảm dần, mà ngược lại tăng dần; nếu quá trình này kéo dài mãi, Vũ trụ cuối cùng sẽ đạt tới Vụ Xé Lớn (Big Rip). Trên phương diện quan trắc, Vũ trụ dường như có dạng hình học phẳng (k = 0), và mật độ trung bình của nó rất gần với giá trị tới hạn giữa khả năng tái suy sụp và giãn nở mãi mãi.[126]

Các thiên hà qua mô hình 3 chiều của ảnh chụp Hubble Ultra Deep Field

Tài liệu tham khảo

WikiPedia: Vũ_trụ http://astronomy.swin.edu.au/~gmackie/billions.htm... http://books.google.ca/books?id=4EidS6_VVNYC&pg=PA... http://www.amazon.com/Goldilocks-Enigma-Universe-J... http://arstechnica.com/science/2013/03/first-planc... http://www.britannica.com/EBchecked/topic/139365 http://www.britannica.com/EBchecked/topic/336940/l... http://www.britannica.com/science/electromagnetic-... http://books.google.com/?id=akb2FpZSGnMC&pg=PA1 http://books.google.com/?id=e-7eAp-bVbEC&pg=PA6 http://books.google.com/books?id=I7a7BQAAQBAJ&pg=P...